

Understanding Cancer Lecture 10 **Types of signalling** pathway: **Transforming growth** factor β (TGF- β) DR HAFSA WASEELA ABBAS www.hafsaabbas.com

RECAP:

What you hopefully should understand so far from Lecture 9

- Phospholipase C-gamma (PLC-γ) is an adaptor protein that binds to the activated EGFR-EGF receptor complex.
- PLC- γ hydrolyses phosphatidylinositol-4, 5-bisphosphate (PI(4,5)P2) (PIP₂) phospholipid in the membrane
- to produce the two second messengers: Diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP₃).
- Diacylglycerol (DAG) stays in the plasma membrane, binds and activates protein kinase C (PKC).

- IP_3 diffuses into the cytoplasm and binds to IP_3 -receptors calcium channels in the endoplasmic reticulum membrane. The binding causes the calcium channels to open and release calcium ions into the cytoplasm.
- PKC phosphorylates its target cellular proteins: cell growth, differentiation and apoptosis.

Mutation in PLC causes various hallmarks of cancer: angiogenesis, evade apoptosis, migration, invasion and metastasis.

What will we learn today?

- **The structure of Transforming growth factor \beta (TGF-\beta)**
- What are SMADs?
- SMAD-dependent pathway: Receptor activation
- SMAD-dependent pathway: Signal transduction
- SMAD-dependent pathway: Cellular response
- SMAD-independent pathway
- The role of Rho GTPases
- Crosstalk with other pathways: GPCR
- Causes of dysregulated pathways and examples of cancer.

GENTLE REMINDER An ideal way of learning:

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Mini-lectures.

Approximate total time: 1 hour Divide over 7 days at your <u>own pace</u>. Challenge yourself with a quiz!

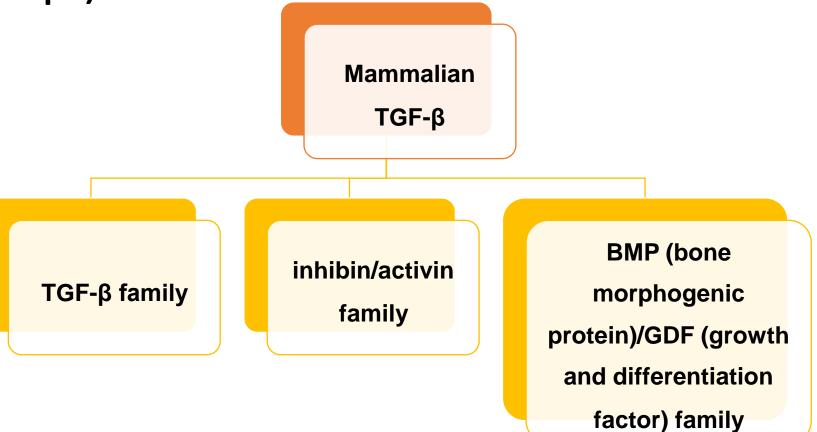
www.hafsaabbas.com

RECAP: How to support your learning?

Glossary to help understand what key words mean.

Summary doodle revision posters by HN designs.

Quizzes to test your knowledge and reflect.


Reference list for further reading.

Acknowledgements: Special thanks to my parents, family, friends and colleagues for their support and the respected teachers and health professions who taught me and installed the passion of cancer/oncology.

The structure of Transforming growth factor β (TGF-β)

TGF-βisapro-inflammatorycytokineproteinmember of the cellgrowth factor superfamily.

There are three main groups.

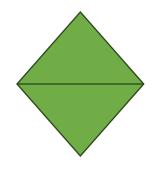
(Aashaq et al. 2021; Marikawa et al. 2016; Yang et al. 2021)

There are **five isoforms of TGF-β in vertebrates**.

Three are found in mammals: TGF-β1, -β2, and -β3.

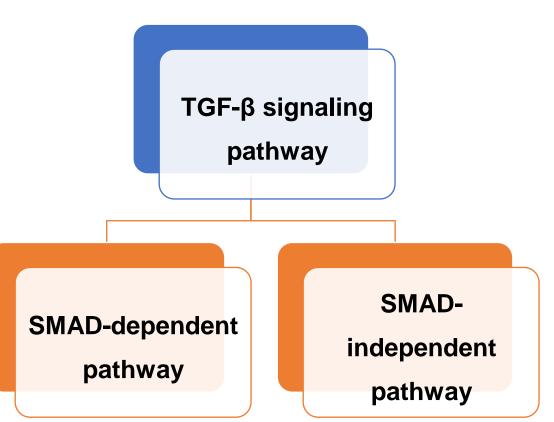
They share 60-80% homology.

They activate the same cell surface receptors.


Isoform	Location	Role
TGF-β1 TGF-β2	Cartilage, bone and skin Neurons, glial cells	Growth, differentiation proliferation
TGF-β3	Palate, Lungs	epithelial-mesenchymal interactions

(Pervan, 2017)

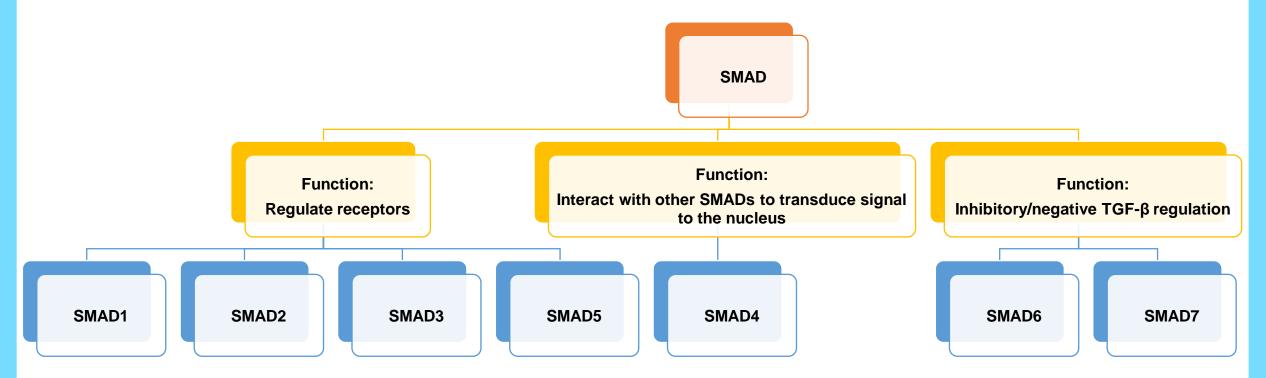
TGF-β is a **25 kDa disulfide-linked** dimeric protein.


Each isoform contains:

- □ Nine conserved cysteine residues.
- Disulfide bonds to bind two TGF-β
 proteins as a dimer.

(Hinck et al., 2016)

TGF-β interact with proteins called **SMADs** and therefore pathways are divided into:


(Aashaq et al. 2021; Yang et al. 2021)

What are SMADs?

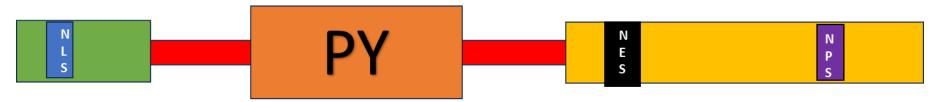
What are SMADs?

They are **proteins that transduce the signals for the receptors of TGF-β superfamily.**

This helps facilitate the regulation of cellular growth and differentiation.

(Balogh et al. 2012; Hata and Chen, 2016)

The structure of SMADs


Regulatory e.g. Smad3

Co-Smad e.g. Smad4

Inhibitory Smad e.g. Smad7

The structure of SMADs

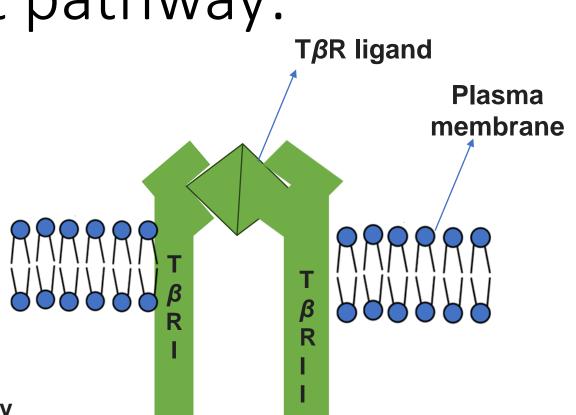
MH1 LINKER MH2

Mad homology 1

DNA-binding site Except for SMAD2.

It induces interactions with transcription factors to stabilize the Smad complex It is where phosphorylation takes place. Mad homology 2

It binds to various proteins that are not associated by the sequence motif

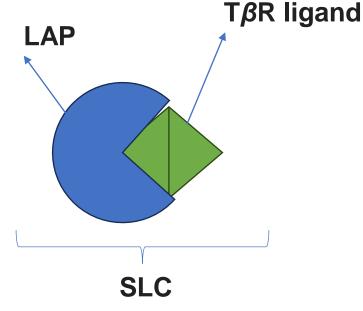

Step 1

The two transmembrane Serine/Threonine kinase receptors in the cell membrane bind together.

 \Box TGF- β receptor I (T β R I)

 \Box TGF- β receptor II (T β R II)

This activates the **C-terminal kinase domain and activity** of TβR I

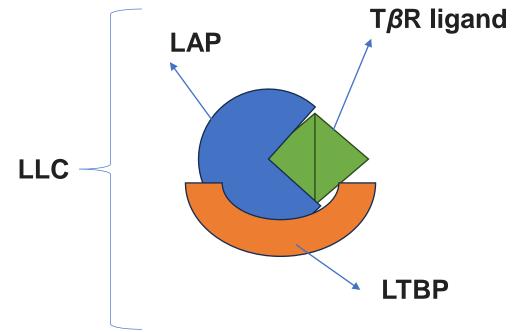

Step 2

The binding of the ligand to the receptor.

Most TGF- β ligands are latent.

They cannot bind to its receptor directly.

It binds to the C-terminal prodomain latencyrelated peptide (LAP) to form a small latency complex (SLC).



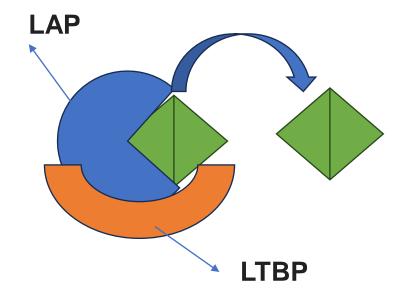
Step 3

The SLC becomes larger and binds with the TGF- β binding protein 1 (LTBP1).

This forms the large latent complex (LLC).

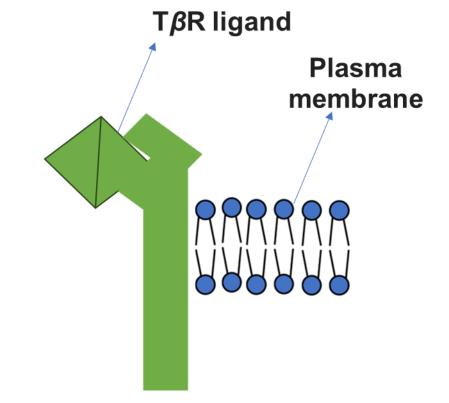
This allows **TGF-**β **to connect to the extracellular matrix.**

Step 4


LLC interacts with proteases to activate TGF- β

Step 5

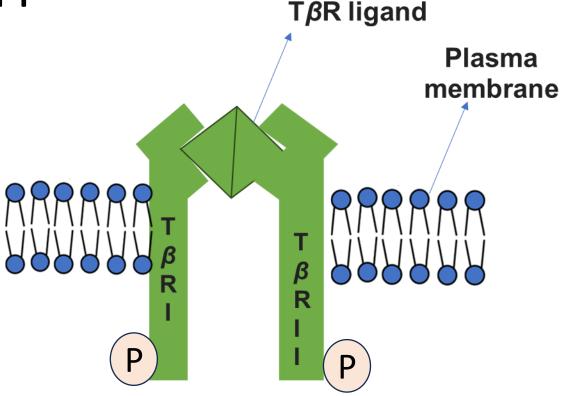
The TGF- β ligand must be released from the LLC to make TGF- β ligand active.

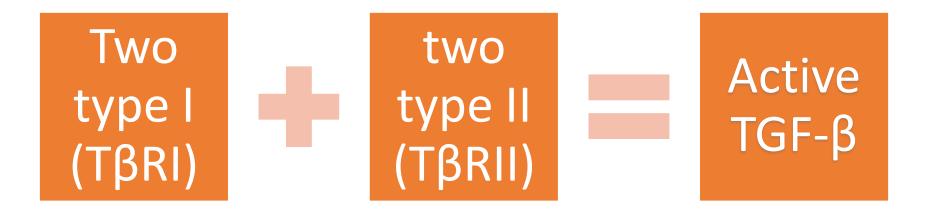

To bind to receptor by either stimulating on LAP or LTBP.

Step 6

The TGF-\beta ligand binds to the transforming growth factor- β receptor-2 (T β RII).

This is facilitated by **β-glycan/transforming** growth factor-β receptor-3 (TβRIII)


(Lopez-Casillas et al. 1993; Sankar et al. 1995)


Step 7

The serine/threonine kinase activity takes place in the cytoplasmic domain.

The TGF- β receptor-1/ALK-5 (T β R1) is recruited to the TGF- β /T β RII complex.

(Haque and Morris, 2017)

(Liu and Chen, 2022)

CONFORMATIONAL

CHANGE IN THE

LATENT COMPLEX.

ENVIRONMENTAL

STRESS

- Proteases e.g. Metalloproteinases, serine,
- Neuraminidase expressed on the surface of viruses.
- Bone morphogenetic protein 1- (BMP1-) like protease directly cleaves LTBP1 in the LLC.
- Thrombospondin 1 (TSP1) and members of the αv integrin family (including αvβ1, αvβ3, αvβ5, and αvβ6) act on LAP to release TGF-β.

 Heat shock, reactive oxygen species, pH and ionizing radiation.

- A glycoprotein rich with cysteine residues expressed in the vascular tree.
- It prevents the binding of TGF- β ligand with its receptor.

• A developmental cancer protein that prevent the ligand to its receptor.

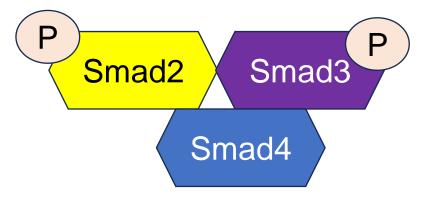

<u>Step 8</u>

The activated TBR I receptor

phosphorylates the SMAD proteins:

SMAD2 and SMAD3 at two serine residues

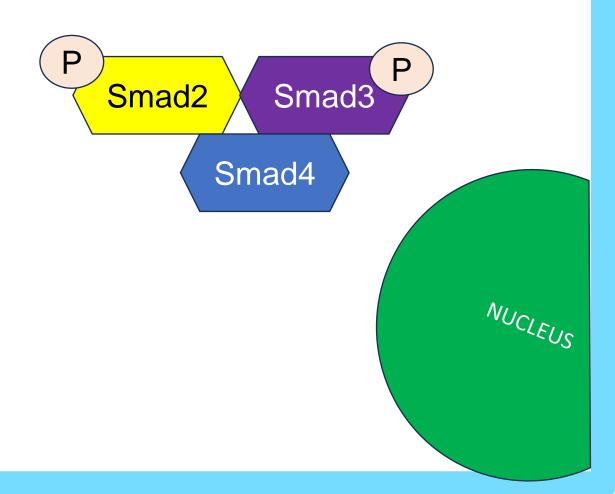
in the SSXS motif.



(Liu and Chen, 2022; Yang et al. 2021)

<u>Step 9</u>

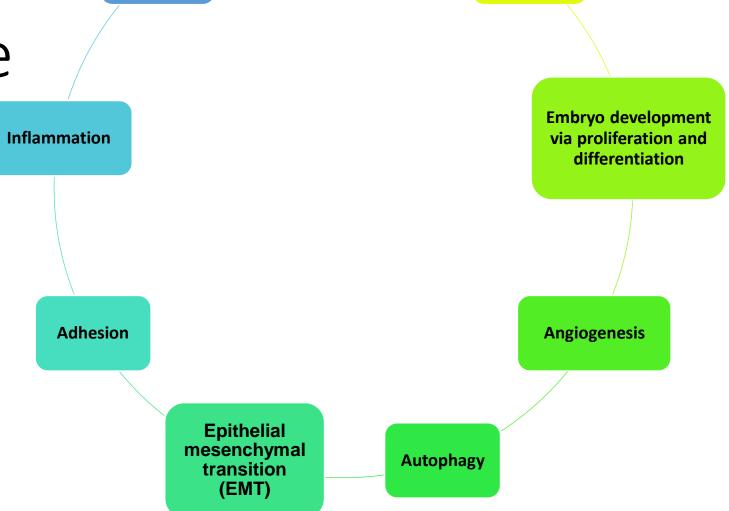
The **phosphorylated SMAD2 and SMAD3 proteins** bind to the **chaperone protein** SMAD4 to form a **heteromeric complex**.


It dissociates from the TβRI kinase domain.

(Savage *et al.* 1996)

<u>Step 10</u>

Collectively, **the SMAD complex** are **transported to the nucleus** and **binds to DNA via their MH1 domains** and **to regulate the transcription of target genes.**



The SMAD-dependent pathway: Cellular response

The SMAD-dependent pathway: Senescence Cellular response

Death-related protein kinases (DAPK) stimulate release of cytochrome C and link SMADs with intrinsic apoptotic pathway.

TGF- β induced early gene 1(TIEG1) stimulates oxidative stress via reactive oxygen species (ROS).

Apoptosis

Immunity

(Zhao et al. 2020)

Apoptosis

TGF- β inhibit the expression of antiapoptotic genes

- BCL-X
- BCL-2
- KIF5
- X-linked inhibitor of apoptosis (XLAP)

TGF-β inhibit the expression of pro-apoptotic genes

Caspase 8

- Caspase 3
- Bcl-2-interacting killer (BIK)

TGF-β associates with the Death domain-associated protein (DAXX) to induce apoptosis.

 DAXX facilitates TGF-β to mediate apoptosis via The phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway and c-Jun N-terminal kinase (JNK) pathway.

Epithelial mesenchymal transition (EMT)

- □ The development of the embryo.
- Tissue repair.
- Wound healing

Fibrosis

Regulation of gene transcription:

E-cadherin, N-cadherin, vimentin and Snail

Cell-adhesion molecules (CAMs)

It creates cell-to-cell junction.

- e.g. Cadherin is a dimer of identical subunits.
- The extracellular domain of one cadherin dimer binds to another cadherin in another cell to promote cell adhesion.

Vimentin

An intermediate filament expressed in normal mesenchymal cells to resist environmental stress and maintain integrity of cells.

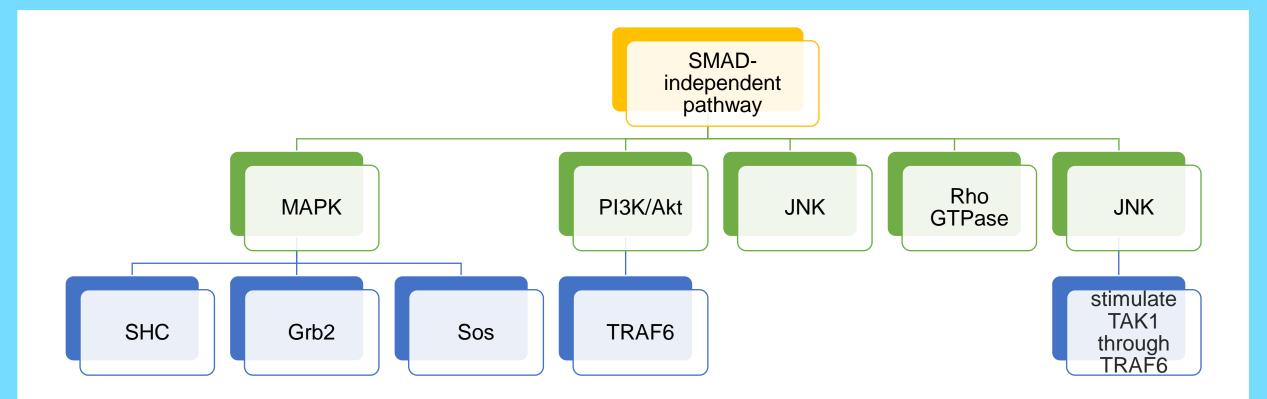
Snail

It negatively regulates cell adhesion by downregulating E-cadherin and upregulate vimentin to increase cell migration and invasion.

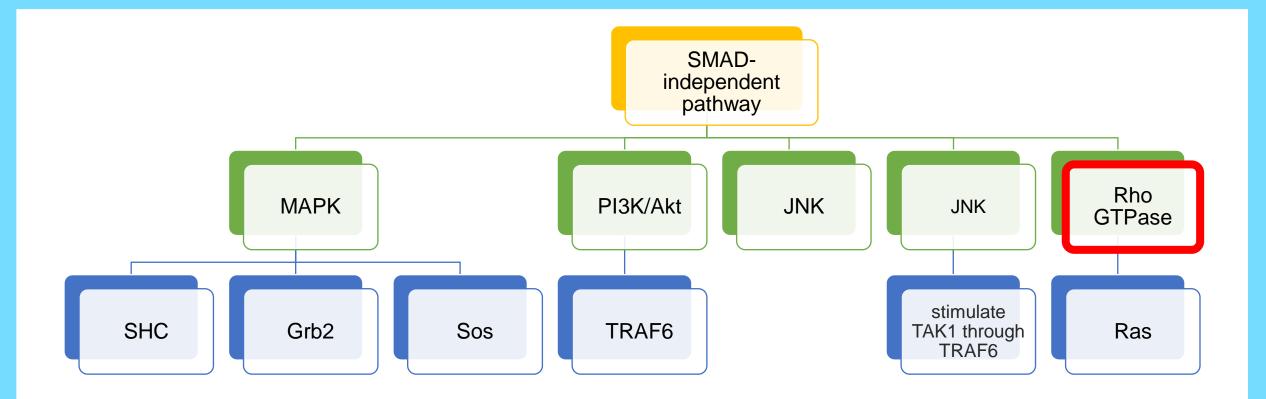
(Santelli and Li, 2011; Bhowmick et al., 2001; Haque and Morris, 2017; Neal et al. 2011)

Metabolism

Glucose levels helps to:


□ Increase **TGF-**β ligand production.

□Increase TβRI and TβRII in the cell membranes.


□Increase latent-TGF-β activation by matrix metalloproteinases.

(Wu and Derynck, 2009).

The SMAD-independent pathway

(Bakin et al. 2002)

(Bakin et al. 2002)

What are Rho GTPases?

- □ A family of small GTPases.
- □ Key examples: RhoA, Rac1 and Cdc42
- □ They associate with GTP and hydrolyse it to GDP.
- □ They regulate actin for:
- Cell migration and invasion.
- Metastasis
- Cell survival

Crosstalk with other pathways: GPCR

Crosstalk with other pathways: GPCR

GPCR ligand involved in Rho pathway	Function
Thrombin	An enzyme that hydrolyses the soluble fibrinogen to the fibrin protein involved in coagulation.
lysophosphatidic acid	A phospholipid that can act as an extracellular signal transmitter and intracellular second messenger.
sphingosine-1-phosphate (S1P)	It is associated to extracellular chaperone proteins. It binds to G protein-coupled S1P receptors (S1PRs) to regulate embryogenesis, homeostasis, immune cell, and organ function after birth.
thromboxane A2	Lipid released from platelets, macrophages, neutrophils and endothelial cells. It stimulates the activation of platelets and undergo aggregation. Vasoconstriction during tissue injury and inflammation.

Crosstalk with other pathways: GPCR

G protein G-alpha 12/13

- They activate RhoA via Rho guanine nucleotide exchange factors (Rho GEF).
- This facilitates downstream
 signalling i.e Rho kinase (ROCK).

G protein alpha q/13

- They activate RhoA by releasing calcium ions.
- This facilitates down-stream
 signalling via protein kinases

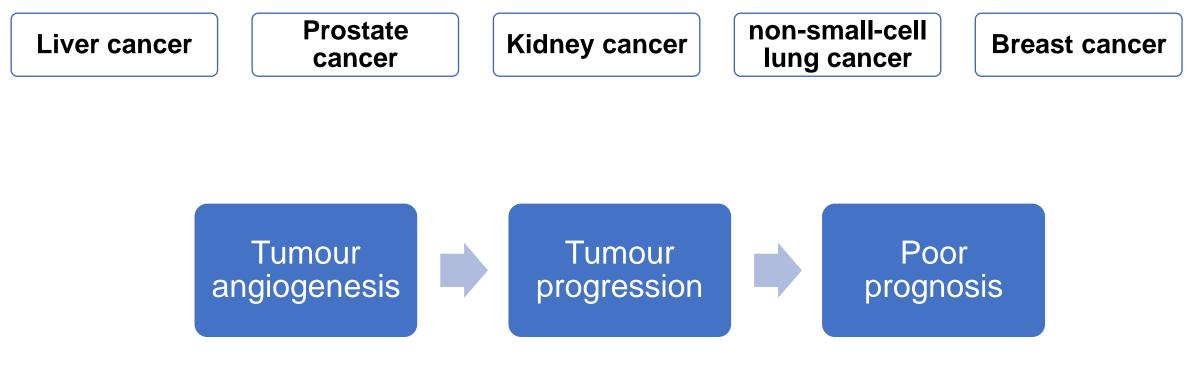
Causes of dysregulated pathways and examples of cancer.

TGF-β ligand and cancer

TGF-β prevents tumour proliferation during the early stages. TGF-β increases tumour invasion, metastasis and chemotherapy resistance in the late stages.

TGF-8 promotes angiogenesis

It promotes growth factors that facilitates angiogenesis, form capillaries, increase nutrients and oxygen in endothelial cells to promote cancer progression: vascular endothelial growth factor (VEGF


connective tissue growth factor (CTGF)

TGF-β/SMAD4 promote growth of new blood vessels that upregulate miR-29a.

This crosstalks with PI3K/Akt pathway

TGF-β receptors increases the expression of matrix metalloproteinases MMP9 and promote the new blood vessels through one of its type I receptors, ALK5.

TGF-8 promotes angiogenesis

TGF-8 promotes apoptosis

Increase the expression of the death-related protein kinase DAPK in liver cancers.

Produces reactive oxygen species and regulate BCL-2 modifying factor (BMF) and BCL-2 interacting mediator (BIM) in liver cancers.

It activates BIM and caspase 9 to mediate apoptosis in gastric cancers. Inhibits the expression of major gastrointestinal spectrum regulator, Krüppel-like Factor 5 (KLF5).

This promotes apoptosis in

pancreatic cancers

(David *et al.* 2016; Yang *et al.* 2021)

SMAD-independent pathways and cancer

□ Rho GTPases increase invasion, metastasis and survival of tumour cells in the connective

tissue of the organ called the stroma.

□ MAPK pathway via Ras and B-Raf mutations can promote metastasis.

□ Jun N-terminal kinase and p38-mediated pathways lowers the malignant potential.

(Dhillon et al., 2007; Li et al., 2014; Svensmark et al., 2019)

TGF-8 promotes reprogramming of metabolism

□ Tumour cells require an energy source in order to grow.

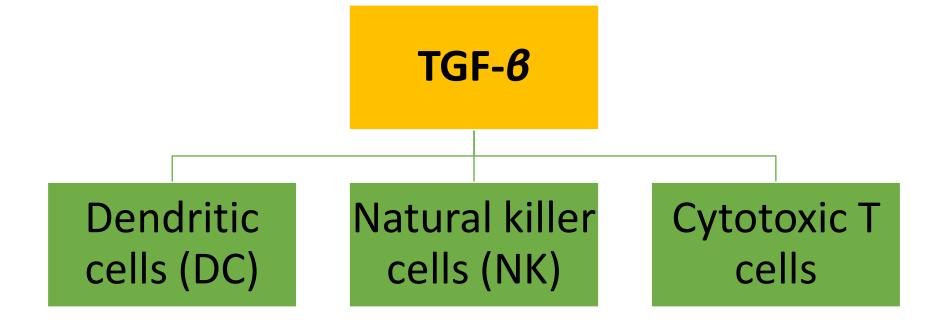
- The Warburg effect is the process where glucose is broken down in the presence of oxygen (aerobic glycolysis).
- \Box Overexpression of T β RI facilitates tumour growth.
- Overexpression of Smad2/3 requires protein kinase C ε for phosphorylation and binding to genes involved in glycolysis.
- Phosphofructokinase 2 (PFK2) expression is stimulated by TGF-β required for invasion and is overexpressed in glioblastoma, pancreatic cancer and colon cancer cells.

(Xu et al., 2018; Hanahan, D., and Weinberg, R. A., 2011; Guido et al. 2012).

TGF-8 promotes invasion and metastasis

□ Decreased expression of E-cadherin.

□ Increased expression of matrix-metalloproteinases,


vimentin, fibronectin and N-cadherin

This lowers cell adhesion.

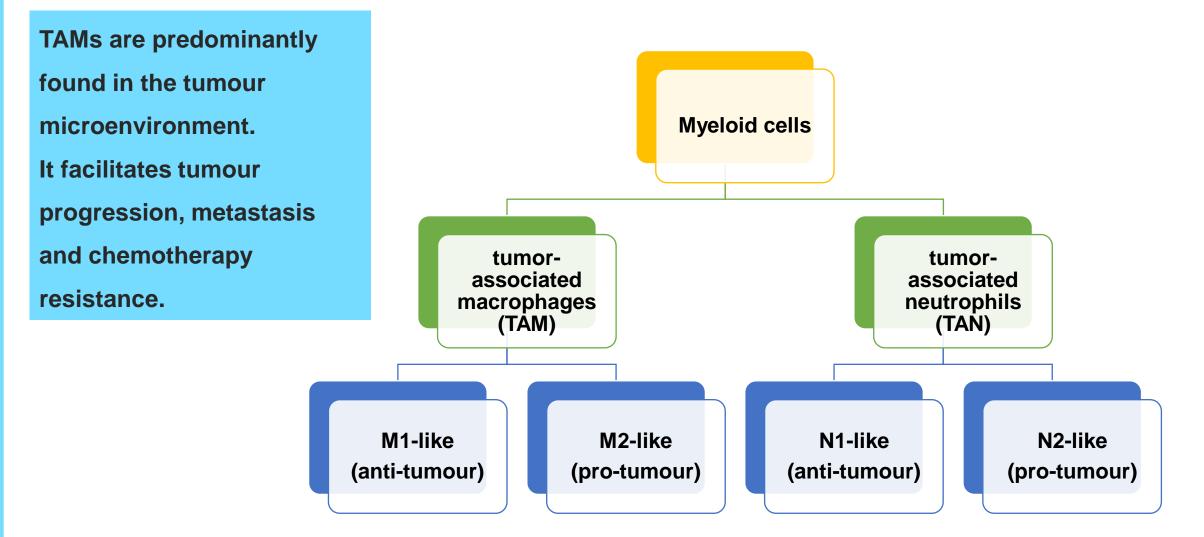
Change in cell shape.

Increase cell migration and cancer progression

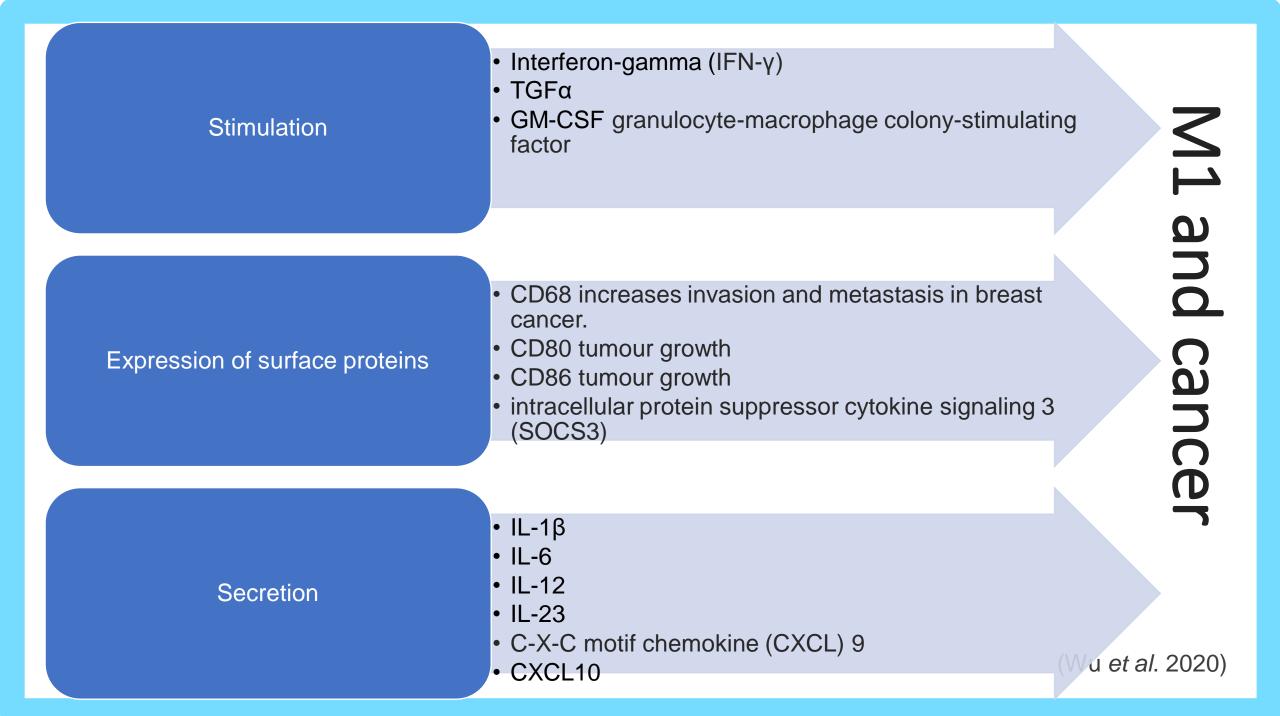
(Loh et al. 2019).

Cytotoxic T cells

TGF-β inhibits cytotoxic
 CD8+ T cells via SMADS


 Normal function: Produces cytokines e.g. interferon gamma (IFN-γ) and Fas ligand to induce apoptosis.

Dendritic cells (DC)

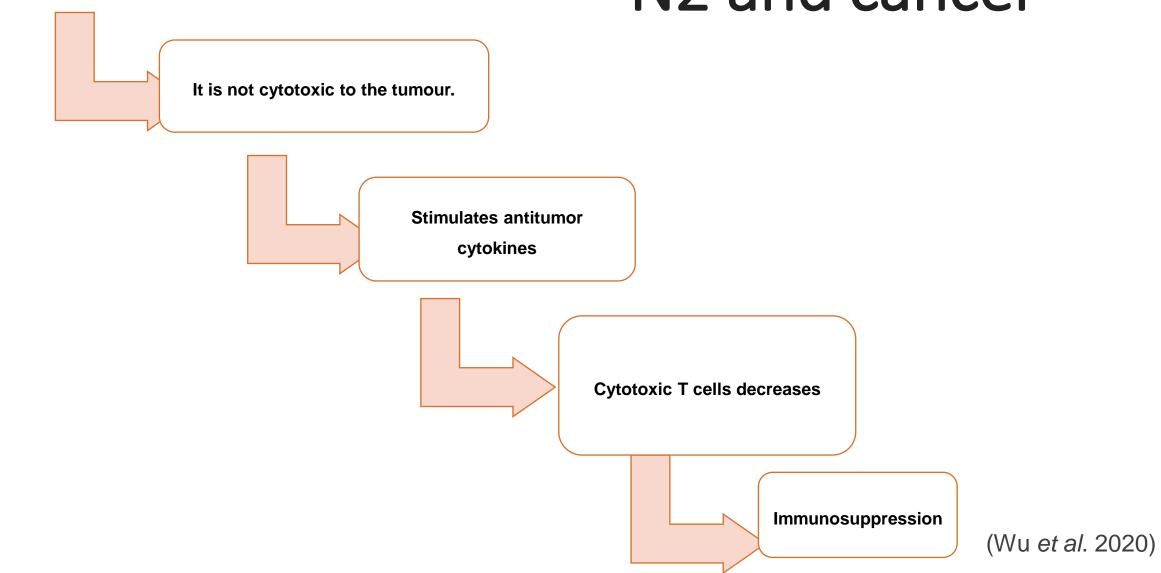

- TGF- β inhibits DC via SMADS
- Normal function: They are antigenpresenting cells to induce T cell response.
- Overexpression of Id1 (differentiation inhibitor of TGF-β) which downregulates the differentiation of DC cells and suppresses the immune system.

Natural killer cells (NK)

- TGF-β inhibits production of Interleukin-15 and receptor natural killer group 2, member D (NKG2D).
- This prevents activation of NK cells.
- Examples of cancers: glioma

M2 and cancer

Stimulation	•	Interleukin-10
Sumulation	•	TGFβ


Expression of surface proteins	 CD163 migration and tumour cells penetrate the blood and lymphatic vessels. CD204 increases proliferation, migration and invasion. CD206 increases expression of metalloproteinases 2, 9 and 10 i.e ovarian cancer.
--------------------------------	---

Secretion	 IL-10 TNF tumor necrosis factor α CCL17 CCL18 	
	• CCL22 • CCL24	

/u et al. 2020)

TGF-β stimulates neutrophils to develop into N2

N2 and cancer

By the end of this lecture, you should understand

TGF- β is a pro-inflammatory cytokine that interacts with proteins called SMADs.

SMAD proteins are divided into: regulatory, co-mediators and inhibitory proteins.

TGF-β binds to the C-terminal prodomain latency-related peptide (LAP) to form a small latency complex (SLC). It then binds with the TGF-β binding protein 1 (LTBP1) to the large latent complex (LLC).

The TGF-β ligand must be released from the LLC to make TGF-β ligand active and stimulate SMAD downstream signalling pathway.

TGF- β can promote or inhibit tumour growth.

Aashaq, S., Batool, A., Mir, S.A., Beigh, M.A., Andrabi, K.I. and Shah, Z.A. (2021). TGF-β signaling: A recap of SMAD-independent and SMAD-dependent pathways. *Journal of Cellular Physiology*.

Bakin, A.V., Rinehart, C., Tomlinson, A.K. and Arteaga, C.L. (2002). p38 mitogen-activated protein kinase is required for TGFβ-mediated fibroblastic transdifferentiation and cell migration. *Journal of Cell Science*, 115(15), pp.3193–3206.

Balogh, P., Katz, S. and Kiss, A.L. (2012). The Role of Endocytic Pathways in TGF-β Signaling. *Pathology* & *Oncology Research*, 19(2), pp.141–148.

Bhowmick, N.A., Ghiassi, M., Bakin, A., Aakre, M., Lundquist, C.A., Engel, M.E., Arteaga, C.L. and Moses, H.L. (2001). Transforming Growth Factor-β1 Mediates Epithelial to Mesenchymal Transdifferentiation through a RhoA-dependent Mechanism. *Molecular Biology of the Cell*, 12(1), pp.27–36.

Botello-Smith, W.M., Abdelaziz Alsamarah, Chatterjee, P., Xie, C., Lacroix, J.J., Hao, J. and Luo, Y. (2017). Polymodal allosteric regulation of Type 1 Serine/Threonine Kinase Receptors via a conserved electrostatic lock. *PLOS Computational Biology*, 13(8), pp.e1005711–e1005711.

Cartier, A. and Hla, T. (2019). Sphingosine 1-phosphate: lipid signaling in pathology and therapy. *Science (New York, N.Y.)*, [online] 366(6463), p.eaar5551.

David, Charles J., Huang, Y.-H., Chen, M., Su, J., Zou, Y., Bardeesy, N., Iacobuzio-Donahue, Christine A. and Massagué, J. (2016). TGF-β Tumor Suppression through a Lethal EMT. *Cell*, 164(5), pp.1015–1030.

Dhillon, A.S., Hagan, S., Rath, O. and Kolch, W. (2007). MAP kinase signalling pathways in cancer. *Oncogene*, [online] 26(22), pp.3279–3290.

Dou, C., Lee, J., Liu, B., Liu, F., Massagué, J., Xuan, S. and Lai, E. (2000). BF-1 Interferes with Transforming Growth Factor β Signaling by Associating with Smad Partners. *Molecular and Cellular Biology*, 20(17), pp.6201–6211.

Duan, D. and Derynck, R. (2019). Transforming growth factor– β (TGF- β)–induced up-regulation of TGF- β receptors at the cell surface amplifies the TGF- β response. *Journal of Biological Chemistry*, 294(21), pp.8490–8504.

Guan, K.-L. (2000). Negative regulation of the serine/threonine kinase B-Raf by Akt. *Journal of Biological Chemistry*.

Guido, C., Whitaker-Menezes, D., Capparelli, C., Balliet, R.M., Lin, Z., Pestell, R.G., Howell, A., Aquila, S., Sebastiano Andò, Martinez-Outschoorn, U.E., Federica Sotgia and Lisanti, M.P. (2012). Metabolic reprogramming of cancerassociated fibroblasts by TGF-β drives tumor growth: Connecting TGF-β signaling with 'Warburg-like' cancer metabolism and L-lactate production. *Cell Cycle*, 11(16), pp.3019–3035.

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of Cancer: the Next Generation. *Cell* 144 (5), 646–674.

Haque, S. and Morris, J.C. (2017). Transforming growth factor-β: A therapeutic target for cancer. *Human Vaccines* & *Immunotherapeutics*, 13(8), pp.1741–1750.

Hata, A. and Chen, Y.-G. (2016). TGF-β Signaling from Receptors to Smads. *Cold Spring Harbor Perspectives in Biology*, [online] 8(9).

Hinck, A.P., Mueller, T.D. and Springer, T.A. (2016). Structural Biology and Evolution of the TGF-β Family. *Cold Spring Harbor Perspectives in Biology*, 8(12), p.a022103.

Li, H., Peyrollier, K., Kilic, G. and Brakebusch, C. (2013). Rho GTPases and cancer. BioFactors, 40(2), pp.226–235.

Hinck, A.P., Mueller, T.D. and Springer, T.A. (2016). Structural Biology and Evolution of the TGF-β Family. *Cold Spring Harbor Perspectives in Biology*, 8(12), p.a022103.

Li, H., Peyrollier, K., Kilic, G. and Brakebusch, C. (2013). Rho GTPases and cancer. *BioFactors*, 40(2), pp.226–235.

Li, L., Su, J., Chen, J., Chen, W. and Chen, X. (2019). The role of lysophosphatidic acid in the physiology and pathology of the skin. *Life Sciences*, 220, pp.194–200.

Liu, H. and Chen, Y.-G. (2022). The Interplay Between TGF-β Signaling and Cell Metabolism. *Frontiers in Cell and Developmental Biology*, 10.

Liu, H. and Chen, Y.-G. (2022). The Interplay Between TGF-β Signaling and Cell Metabolism. *Frontiers in Cell and Developmental Biology*, 10.

Loh, C.-Y., Chai, J.Y., Tang, T.F., Wong, W.F., Sethi, G., Shanmugam, M.K., Chong, P.P. and Looi, C.Y. (2019). The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. *Cells*, 8(10), p.1118.

López-Casillas, F., Wrana, J.L. and Massagué, J. (1993). Betaglycan presents ligand to the TGFβ signaling receptor. *Cell*, 73(7), pp.1435–1444. doi:https://doi.org/10.1016/0092-8674(93)90368-z.

Morikawa, M., Derynck, R. and Miyazono, K. (2016). TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. *Cold Spring Harbor Perspectives in Biology*, [online] 8(5), p.a021873.

Pervan, C.L. (2017). Smad-independent TGF-β2 signaling pathways in human trabecular meshwork cells. *Experimental Eye Research*, 158, pp.137–145.

Rucker D, Dhamoon AS. Physiology, Thromboxane A2. 2022 Sep 12. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 30969639.

Sahai, E. and Marshall, C.J. (2002). RHO–GTPases and cancer. *Nature Reviews Cancer*, 2(2), pp.133–142.

Sankar, S., Mahooti-Brooks, N., Centrella, M., McCarthy, T.L. and Madri, J.A. (1995). Expression of Transforming Growth Factor Type III Receptor in Vascular Endothelial Cells Increases Their Responsiveness to Transforming Growth Factor β2. *Journal of Biological Chemistry*, 270(22), pp.13567–13572.

Satelli, A. and Li, S. (2011). Vimentin in cancer and its potential as a molecular target for cancer therapy. *Cellular and Molecular Life Sciences*, 68(18), pp.3033–3046.

Savage, C., Das, P., Finelli, A.L., Townsend, S.R., Sun, C.Y., Baird, S.E. and Padgett, R.W. (1996).

Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth

factor beta pathway components. Proceedings of the National Academy of Sciences, 93(2), pp.790–794.

Svensmark, J.H. and Brakebusch, C. (2019). Rho GTPases in cancer: friend or foe? Oncogene.

Wu, K., Lin, K., Li, X., Yuan, X., Xu, P., Ni, P. and Xu, D. (2020). Redefining Tumor-Associated Macrophage Subpopulations and Functions in the Tumor Microenvironment. *Frontiers in Immunology*, 11.

Xu, W., Zeng, F., Li, S., Li, G., Lai, X., Wang, Q.J. and Deng, F. (2018). Crosstalk of protein kinase C ε with Smad2/3 promotes tumor cell proliferation in prostate cancer cells by enhancing aerobic glycolysis. *Cellular and Molecular Life Sciences*, 75(24), pp.4583–4598.

Yang, Y., Ye, W.-L., Zhang, R.-N., He, X.-S., Wang, J.-R., Liu, Y.-X., Wang, Y., Yang, X.-M., Zhang, Y.-J. and Gan, W.-J. (2021). The Role of TGF-β Signaling Pathways in Cancer and Its Potential as a Therapeutic Target. *Evidence-Based Complementary and Alternative Medicine*, 2021, pp.1–16.

Yu, O.M. and Brown, J.H. (2015). G Protein–Coupled Receptor and RhoA-Stimulated Transcriptional Responses: Links to Inflammation, Differentiation, and Cell Proliferation. *Molecular Pharmacology*, [online] 88(1), pp.171–180.


Zhao, H., Wei, J. and Sun, J. (2020). Roles of TGF-β signaling pathway in tumor microenvirionment and cancer therapy. *International Immunopharmacology*, 89, p.107101.

Understanding Cancer Lecture 11 **Types of signalling** pathway: normal and dysregulated BCR-ABL DR HAFSA WASEELA ABBAS www.hafsaabbas.com

