

Understanding Cancer

Lecture 3 Types of cell signalling

DR HAFSA WASEELA ABBAS www.hafsaabbas.com

RECAP:

What you hopefully should understand so far from Lecture 2

There are 8 hall marks of cancer developed by Hanahan and Weinberg: sustained proliferative signalling, evading growth suppressors, resisting apoptosis, enable replicative immortality, invasion and metastasis, angiogenesis, reprogramming energy metabolism and avoiding immune destruction.

There are two contributing factors: genomic instability and tumour-promoting inflammation that underlies most of the hallmarks of cancer.

The cell cycle presents the phases in how normal cells divide and grow. There are four phases: Gap 1 (G1), S phase, Gap 2 (G2) and Mitosis (M).

There are two types of apoptotic pathways and depend on molecular scissors called caspases: intrinsic and extrinsic.

Cancer cells interact with other cells in the EMT in order to invade and metastasise.

What will we learn today?

What is cell signalling?

Signalling type one: Paracrine signalling

Signalling type two: Contact dependent signalling

Signalling type three: Autocrine signalling

Signalling type four: Endocrine signalling

GENTLE REMINDER An ideal way of learning:

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

5 Mini-lectures.

Approximate total time: 1 hour Divide over 7 days at your <u>own pace</u>. Challenge yourself with a quiz!

www.hafsaabbas.com

RECAP: How to support your learning?

Glossary to help understand what key words mean.

Summary doodle revision posters by HN designs.

Quizzes to test your knowledge and reflect.

Reference list for further reading.

Acknowledgements: Special thanks to my parents, family, friends and colleagues for their support and the respected teachers and health professions who taught me and installed the passion of cancer/oncology.

What is cell signalling?

Key Facts: What is cell signalling?

Cellular signalling is how cells communicate and involves three key steps:

There are different types of signalling pathways and vary based on the distance travelled to reach the target cells.

Signalling type one: Paracrine signalling

Key Facts: What is paracrine signalling?

A signal that is transmitted from a cell connected by gap junctions to a nearby cells/adjacent cells.

Key Facts: Connexons

Connexon hemichannels are pore-forming transmembrane protein channels made of 6 connexin proteins. They help release signalling molecules/ligands e.g. ATP and uptake small molecules e.g. glucose.

ATP (adenosine triphosphate) is the energy source used by all cells.

Glucose is a sugar molecule used to

produce energy.

Key Facts: Connexins

Connexin consist of:

- Four membrane- spanning domains (M1, M2, M3, M4).
- Two extracellular loops (E1 and E2)
- One cytoplasmic loop (CL).

Key Facts: What are the features of a paracrine signalling pathway? **ANIMAL CELL**

Key Facts: A closer look.

Diffusion is a type of movement of particles moving from a high to a low concentration down a concentration gradient.

Key Facts: Concentration gradient

Signalling Molecule (low concentration)

```
DOWN A CONCENTRATION GRADIENT
```


Signalling Molecule (high concentration) Signalling Molecule (low concentration)

AGAINST THE CONCENTRATION GRADIENT (requires energy as ATP)

A concentration gradient is the difference between two areas.

NEUROTRANSMITTERS

They are **chemical ligands** that transmits signals via **adjacent cells**.

□ The **nervous system** is one of the organ systems found in the body.

□ It is divided into two types of systems:

CENTRAL NERVOUS SYSTEM
 BRAIN AND SPINAL CORD
 PERIPHERAL NERVOUS SYSTEM.
 NERVES

The role of the nervous system is to communicate via electrical messages (impulses) to coordinate a response to stimuli e.g. change to temperature, taste, protect from danger.

Central Nervous System

- It consists of the brain and spinal cord.
- It receives information and coordinates responses to stimuli.

Peripheral Nervous system

- It consists of **connective nerves.**
- The nerves connected to the sense organs and to the effectors (muscle/glands) to conduct the response.

Nerves

Dendrites receives the electrical messages.

Key Facts: Nerves

Axon

A long tube that carries electrical impulses from one neuron to another.

Key Facts: Nerves

Key Facts: Nerves

Schwann cells.

They contain a **fatty layer** called **myelin sheath to prevent electrical shock nor leaking impulses**. **It provides insulation** and **helps speed up transmission of messages**.

Key Facts: Nerves

The nodes of Ranvier.

They are **small space between Schwann cells**. They allow the **electrical impulse to jump to send message** at a **rapid rate along the axon**.

Cell body.

The support centre with large surface area and nucleus.

Key Facts: Nerves

Axon terminal It is finely branched to communicate with other nerve cells.

Key Facts: Nerves

DIRECTION OF IMPULSE/MESSAGE

There is a small gap between the nerve cells called a synapse to allow signal travel quickly in one direction as a chemical message before communicating electrically again.

Key Facts: Synapses

Key Facts: The pathway

Signalling type two: Contact dependent

Key Facts

Ligands bind to the cell surface of another cell via receptor.

Example: Plasmodesmata.

- They are pores found in plant cells.
 They are filled with water that connects between cell membranes of nearby cells.
- This helps exchange and transport small signalling molecules and ions through specific channels between cells.
- Large molecules cannot pass through because of their size e.g. DNA and proteins.

Signalling type three: Autocrine signalling

Monocytes are a type of immune cell produced in the bone marrow.

They produces proteins called **cytokines that affect themselves and other immune cells.**

Cytokines provide a communication network where immune cells cross talk to create response.

Interleukin-1 (IL-1) is a type of cytokine and is produced in monocytes in response to external signal.

IL-1 can bind to cell-surface receptors on the same cell that produced it.

Key Facts: Roles of Cytokines

They regulates mitosis for growth and repair of host cell.

 They regulates differentiation in monocytes to form another type of immune cell called
 phagocyte/macrophages to engulf
 bacteria and damaged organelles.
 Specific and non-specific immune

responses.

Signalling type four: Endocrine signalling

Key Facts: Features of Endocrine signalling

Key Facts: The pathway

1) RECEPTOR ACTIVATION

Each hormone (signalling molecule) bind to specific receptors that have a complementary shape on their target cells.

2) SIGNAL TRANSDUCTION

A cascade of reactions that may involve enzymes and proteins occurs.

3) CELLULAR RESPONSE

Alter target enzyme or protein or gene to induce activity

Type of hormone	Features	Example
Steroid hormone	They are made from fats/lipids via cholesterol.	Oestrogen
	They are soluble and pass through membrane.	
	They DO enter the cell and act on the DNA.	
Eicosanoids	They are lipids produced from the fatty acid chains of	Prostaglandins
	phospholipids found in plasma membrane.	
Amino acid-derived	Amino acids are the monomers and building blocks that join	Adrenaline,
	together via peptide bonds to make proteins.	Noradrenaline
	The amino acid is tyrosine is used to produce adrenaline.	
Protein	They are not soluble in the membrane.	Insulin
	They DO NOT enter the cell.	

By the end of this lecture, you should understand

Cell-to-cell communication consists of direct, paracrine, contact-dependent, autocrine and endocrine signalling pathways.

Cell signalling has three key steps: receptor activation, signal transduction and cellular response.

Dysregulation of cellular signal transduction pathways underlies most of hallmarks of cancer.

There are **different types of signalling pathways** and vary based on the **distance** travelled to reach the **target cells**.

Protein-based ligands are insoluble in the membrane and does not enter the cell. Fat-based ligands are soluble and pass through membrane.

By the end of this lecture, you should understand

Feature	Nervous system	Endocrine system
Stimulus	Yes	Yes
What kind of information is transmitted?	Electrical (electrical impulses)	Chemical (hormones)
How is the information transmitted?	Nerve cells (neurones)	Blood
Organ involved?	Yes	Yes
Location of target organ	Localised cells	Distant, many cells affected
Involves a response	Yes	Yes
Type of response	Involuntary/Automated or voluntary	Involuntary/Automated
The length of the response?	Short	Long
The duration of the response?	Quick	Slow

Reference list for further reading

Andrés Orellana, J., Giaume, C. and C. Sáez, J. (2011) 'Role of connexin hemichannels in neurodegeneration', *Neurodegenerative Diseases - Processes, Prevention, Protection and Monitoring* [Preprint]. doi:10.5772/28054.

Brooker, R., Widmaier, E., Graham, L., Stiling, P. (2008) '*Biology: Chemistry, Cell Biology and Genetics*'. United States of America: McGraw Hill.

King, T.C. (2007) 'Tissue homeostasis, damage, and Repair', *Elsevier's Integrated Pathology*, pp. 59–88. doi:10.1016/b978-0-323-04328-1.50009-7.

Nigerian scholars (n.d.) Forms of Signalling Available [online] <u>https://nigerianscholars.com/tutorials/cell-communication/forms-of-signaling/</u>

Nisar, S., Hashem, S., Macha, M., Yadav, S., Muralitharan, S., Therachiyil, L., Sageena, G., Al-Naemi, H., Haris, M., and Bhat, A. (2020). Exploring Dysregulated Signalling Pathways in Cancer. *Current Pharmaceutical Design*. 26(4), pp. 429–445.

Pecorino, L. (2012) 'Molecular Biology of Cancer Mechanisms, Targets, and Therapeutics' UK: Oxford University Press.

Ranga, nr (2023) 'Cell Signaling | 5 Types with Suitable Examples' Available [online]

https://www.studyread.com/cell-signaling/#google_vignette

Understanding Cancer

Lecture 4 **Receptor activation**

DR HAFSA WASEELA ABBAS www.hafsaabbas.com

